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Introduction: 

Math is a wonderfully complex enigma. It has so much to offer the world, but the world 

openly hates every mention of its name. To truly understand math is to accept it and take the 

time to get to know it properly. But no one has the time for that so here we are.  

 Music is simple. It makes people feel every emotion on the spectrum and we still push for 

more. It moves us, shapes us, and surrounds us. The world takes the time to understand music 

because the world sees it as something worth knowing. People pay attention to music as a 

pastime and an addition to daily life. Music does not take brain power to understand its purpose.  

 Until now. 

 Music is a medium with which we present our world and I am here today to use it to 

explain mathematics. Fractals, Chaos Theory, Fourier Series, Fibonacci’s Sequence, Modular 

Arithmetic, and Symmetries can all be expressed through music. This music can then be used to 

explain those concepts. The purpose of this paper is to explain how music can explain these 

complex topics and, hopefully, to increase your knowledge on mathematics, music, or both. 

Math is a big beautiful world and I am here to show it to you. 
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Fractals: 

Fractals provide good screen savers, artwork, and lyrics in Disney songs. Some say that a, 

“fractal is a never-ending pattern” (Fractal Foundation). This means that there is a pattern in 

place that the shape must follow so that as the shape is enlarged, more of the fractal is revealed. 

A perfect fractal goes on to infinity and this is what makes it so intriguing. The deeper you look 

at a fractal the more of it you can see since for a fractal to exist you must be able to look at just 

part of the fractal and see the entirety of it at the same time. This is an odd concept; however, it 

makes much more sense while examining a fractal.  

 The precise definition of a fractal is difficult to determine, because there is not a single 

definition that is agreed upon. Mandelbrot is revered in the field of fractals and he himself has 

put out definitions but later recalled them since they were not specific enough for his needs 

(Feder 2). The most agreed upon part of the definition is that a fractal is a repeated pattern on 

different scales (Fractals).  

 Self-similarity, scaling, and dimension are critical to the way that fractals are viewed. 

Self-similarity is the idea that the closer a fractal is viewed the same shape continues to emerge 

(Liebovitch 8). This is the pattern repeating itself smaller and smaller as it goes on forever. In 

order to view these small patterns, scaling is used: relating the size of the shape to the size of the 

pattern around it which is known to be larger (Liebovitch 8). The scaling factor is the value of 

the length of the old sections of the fractal in relation to the new pieces. This seems a bit 

ridiculous: why would we need to know the size of the smaller part of the fractal? The answer is 

that since all parts of the fractal look identical, there is a need to make sure that it is understood 

which part of the fractal is being viewed. It also helps to know if someone is referring to the 

fractal as a whole or a smaller part of the fractal. Dimension takes this scaling information and 
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uses it to determine which parts of the fractals are new by taking the natural logarithm of the 

number of new pieces of the fractal over the natural logarithm of the scaling factor, 

ln(#	𝑜𝑓	𝑛𝑒𝑤	𝑝𝑖𝑒𝑐𝑒𝑠) /ln	(𝑠𝑐𝑎𝑙𝑖𝑛𝑔	𝑓𝑎𝑐𝑡𝑜𝑟) (Liebovitch 8). The idea behind dimension is 

referred to as box counting where a “box” must have greater dimension than the fractal in 

question, and the dimension is the count of how many boxes it takes to cover the complete fractal 

(Chapter). This concept can be seen in Figure 1.1 as a fern that acts as a fractal is covered in 

boxes and the scales show the smaller parts of the fractal. Self-similarity, scaling, and dimension 

are how to view fractals so that they can be understood as a whole.  

 
Figure 1.1 Box Counting (Chapter) 

 One famous fractal is Koch’s snowflake which is traditionally started by an equilateral 

triangle. However, each individual side behaves the same, so it is easier to discuss the fractal as 

Koch’s curve. The simplest explanation of the curve is that the line begins as three units long, 

then the middle unit is replaced by two lines with each of the lines equal to one unit of length 

(Liebovitch 54). These two lines add a point over the middle third. This pattern continues and 

with each iteration every straight line gets a point in the middle third. Every iteration is given a 
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number, for example the original line is n=0, after the first point is added it is n=1 and so on 

every time that the points are added to all of the existing straight lines (Feder 16). The snowflake 

is the curve just on all three sides of the equilateral triangle expanding on all sides 

simultaneously. Koch’s curve and snowflake therefore looks like the images in figures 1.2 and 

1.3.  

       

Figure 1.2 Koch’s Curve (Julie)     Figure 1.3 Koch’s Snowflake (Wikipedia) 

 From a mathematical point of view, Koch’s snowflake is intriguing. Due to the points 

being added at every iteration, Koch’s snowflake has infinite perimeter that has a self-similarity 

dimension (Liebovitch 54). The infinite perimeter comes from the always expanding sides and 

the self-similarity dimension finds the perimeter’s dimension and we calculate this by dividing 

the natural logarithm of new pieces (4) by the natural logarithm of scaling factor (3). This 

comparison of 4/3 also gives the amount that the perimeter grows during each iteration. This 

means that for each iteration the current perimeter is multiplied by 1.33 to get the new value of 

the perimeter.    
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 The Sierpinski Triangle is another famous fractal that is studied because of the simplicity 

of the construction combined with its mathematical aspects. The Sierpinski triangle is created by 

taking an equilateral triangle and marking points exactly halfway between each of the sides and 

connecting them (creating an upside down triangle), this idea is repeated to create the fractal 

(Parsons). The result of the first iteration is 3 smaller triangles within the first one on each side of 

the upside-down triangle. This continues with three smaller triangles within each of those smaller 

triangles and the pattern continues. The shape is formed around these upside-down triangles that 

are “removed” from the shape. This means that there are no additional triangles found in the 

upside-down triangles. The shape quickly complicates itself and it is easy to see the fractal being 

produced in Figure 1.4. No triangles are added to the spaces that have been removed, but there 

will always be more space to create new triangles within the remaining triangles.  

 

Figure 1.4 The Sierpinski Triangle (Parsons) 

The first piece of fractal music that was written for this project is a basic musical fractal. 

It starts as six notes: a quarter note followed by four eight notes and another quarter note. At 

each iteration the longest notes are replaced by a smaller version of the same pattern. As you 

listen, there are long tones to designate when the next iteration is about to begin. This is a simple 

fractal meant to demonstrate the concept of a shape that continues to become more and more 
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complex. The piece is a complete fractal because once the most complex iteration is heard, the 

piece begins to simplify to make the piece symmetric. This confirms that the piece itself is a 

fractal that grows more complicated in the middle, much like Koch’s snowflake and the 

Sierpinski Triangle.  

The second piece is a representation of Koch’s Snowflake up to iteration n=3. Between 

iterations there is three beats of rest so that the listener can understand how much more 

complicated the piece becomes as n increases. The piece creates the fractal as can be seen 

visually from the sheet music as the ups and downs of the music match the idea of triangles 

being added. The longer notes represent the straight lines of the fractal and so in each iteration 

the long notes were broken up and notes were added in the center to create the feel of a triangular 

point. 

The final fractal piece is a representation of the Sierpinski Triangle. We begin with the 

bottom line of the triangle: notes are added halfway between the previous notes until there is 

very little rest in the measure. The rests correspond to the triangles being removed from the 

larger triangle. The music travels along the bottom of the triangle as described followed by the 

left side and then the right. The sides are constructed similarly only with rising and falling 

pitches to match the idea of a triangle. The first measure of each section begins with the end 

points of the triangles. The result is a building of each side of the triangle separately and then 

combined for the final line of the song. 
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Chaos Theory: 

 Chaos theory appears to be a random collection of points and lines; however, it is 

completely the opposite. Chaotic functions are nonlinear functions that are practically impossible 

to predict (Fractal Foundation Chaos Theory). This leads to graphs and figures that are disjointed 

and as such they are given the name chaotic.  

 The main difference between chaos and randomness is the deterministic factor of chaos. 

This means that the system has order even if it is difficult to see. Chaotic systems are recursive 

meaning that each data point was found by using the point value before it. These connections are 

rarely obvious and that is why people assume that these points were created from randomness 

(Liebovitch 118). Chaotic equations are interesting because they are sporadic, and they are 

greatly affected by seemingly minute differences. Some of these small changes happen when 

different values are used as the first value of a function, also called initial conditions. Initial 

conditions are a large part of this because one of the definitions of chaos is that, “if a system is 

rerun with almost the same starting conditions, the values of the variables measured at the same 

time of the two runs separate from each other exponentially fast as a function of time” 

(Liebovitch 168). This explains why when initial conditions are off by small amounts, the end 

result is different from the original by a noticeable amount. Many chaotic equations are shown 

side by side with other cases that have nearly identical initial conditions, because this shows the 

extent of the chaos. The most famous chaotic idea is the butterfly effect which states that if a 

butterfly flaps its wings on one side of the world it will affect if a tornado occurs or not 

somewhere else in the world (Chaos 2019). The butterfly flapping its wings is the initial 

condition and the tornado or lack thereof is the exponentially different result that can occur from 
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this scenario. Thus that one small difference of the butterfly’s wings changed the recursive 

relationship of the Earth’s climate to create a tornado or not. 

 The equation x(n+1)=3.95[x(n)][1-x(n)] is chaotic because it is deterministic, as can be 

seen by the multiplication of the previous term in the equation. The equation begins by an 

arbitrary choice of a starting point. Table 2.1 shows the equation with three different starting 

values: 0.892, 0.893, and 0.894. The Table 2.1 shows the journey of the equation with all three of 

the different initial conditions. 

x(n)=1 0.892 0.893 0.894 
x(n)=2 0.380 0.360 0.374 
x(n)=3 0.931 0.910 0.925 
x(n)=4 0.253 0.324 0.274 
x(n)=5 0.747 0.865 0.786 
x(n)=6 0.746 0.461 0.664 
x(n)=7 0.748 0.981 0.881 
x(n)=8 0.745 0.074 0.414 
x(n)=9 0.750 0.271 0.958 
x(n)=10 0.741 0.780 0.159 
x(n)=11 0.758 0.678 0.528 
x(n)=12 0.725 0.862 0.984 
x(n)=13 0.788 0.470 0.062 
x(n)=14 0.660 0.984 0.230 
x(n)=15 0.886 0.062 0.700 
x(n)=16 0.399 0.230 0.830 

Table 2.1 Table of the chaotic outputs of the given equation (Equation and first column of values began in Liebovitch’s book.) 

 These initial conditions differ by 0.001 and they all follow the same pattern, but they take 

off in very different directions and end at points that differ by at least 0.169. The musical piece 

created from these values shows these situations by each number being associated with a note on 

the staff. Lower values correspond to lower notes and vice versa. It is possible to follow along 

with the piece by using Table 2.1. The music plays each column individually and then all three 
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columns are played at the same time to help give perspective on the differences between the 

situations. 

 The equation x(n+1)=4 [x(n)][1-x(n)] is chaotic because the values are deterministic. 

When x[0]=0.4, Table 2.2 emerges to show the values of the chaotic equation: 

x[0] 0.9600 
x[1] 0.1536 
x[2] 0.5200 
x[3] 0.9984 
x[4] 0.0064 
x[5] 0.0254 
x[6] 0.0990 
x[7] 0.3568 
x[8] 0.9180 
x[9] 0.3011 
x[10] 0.8418 

Table 2.2 Table of the chaotic outputs for the equation x(n+1)=4 [x(n)][1-x(n)] 

 These values can then be applied to a song such as “Mary had a Little Lamb” by taking 

the total number of beats (32) and multiplying by the percentages given in the table and rounding 

to whole beats to select the notes. For each of these products that were found, the selected note 

was raised by one pitch (one note was chosen twice, so it was moved twice). Some measures 

were affected three times within the four beats, other measures were not touched. That is how 

chaos theory works, there is very little visible logic behind the results of these equations. And 

although the song sounds as if random notes are raised, the choices made followed a very precise 

chaotic pattern. The original song is played first followed by the chaotically adjusted version so 

the listener can hear the difference. 
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Fourier Series: 

There are curves in mathematics that are very difficult to quantify. There are plenty of 

equations that are difficult to write an equation for: That is why we have Fourier Series. Fourier 

Series uses sines and cosines to interact with one another to create a harmonic analysis of the 

curve and to mimic the actual graph (Weisstein Fourier). These are not exact equations, but some 

of the predictions are fairly close to the desired end result.  

Fourier Series is just that—a series. The basic equation is 𝑓(𝑥) = !
"
𝑎# +

∑ 𝑎$%
$&! cos(𝑛𝑥) + ∑ 𝑏$ sin(𝑛𝑥)%

$&!  where 𝑎# =
!
' ∫ 𝑓(𝑥) 𝑑𝑥'

(' , 𝑎$ =
!
' ∫ 𝑓(𝑥) cos(𝑛𝑥) 𝑑𝑥'

(' , 

and 𝑏$ =
!
' ∫ 𝑓(𝑥) sin(𝑛𝑥) 𝑑𝑥'

('  (Weisstein Fourier). When multiple iterations have been 

achieved, the formulas produce a summation that is a large string of sines and cosines with 

coefficients abounding. The more iterations of the series that are used, the more accurately the 

prediction will be close to the actual graph. Each iteration adds curves to the prediction until it 

slowly matches with the intended picture; the original prediction is typically a horizontal line on 

the x-axis and as the series increases the prediction improves to shadow the graph more 

accurately (Weisstein Fourier). The more iterations that the series performs provides the series 

with more information and more terms which is what allows the series to become more accurate. 

These predictions are close, but they all include what is known as the Gibbs phenomena: this is 

when there is a slight bump on the prediction directly before the true values drastically change 

(Weisstein Gibbs). This is because sines and cosines make up the prediction and they are wave 

equation that do not keep up with big interval changes as well as other changes. These waves can 

also be seen throughout the graph; however, they are simply more distinct around large changes.  
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The Fourier music piece is based around the square curve and how the Fourier Series 

forms around that. The first two notes that you hear are the true square curve that the Fourier 

Series will try to replicate. Following a measure of rest is the first iteration of Fourier Series, 

then another rest and the second iteration, and so on. It is easy to hear how much closer the 

estimations grow toward the square curve. The major difference is that the two notes are 

disconnected in the square curve; however, Fourier connects the lines (which is easy to hear in 

the piece). It is also possible to hear the Gibbs phenomena, every iteration (following the first) 

overestimates the maximum and minimum of the original function due to this principle 

(Weisstein Gibbs). The musical piece follows Figure 3.1 since the black lines signify the square 

curve, the red line is the first iteration of Fourier Series, the orange line is the second iteration, 

followed by the yellow line, then the green line, and finally the blue line.  

 

Figure 3.1 The square curve and the first five Fourier Series outputs attempting to replicate the initial curve 
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Fibonacci’s Sequence: 

1,1,2,3,5,8,13,21,34…Fibonacci’s sequence is one of the most popular string of numbers 

that are discussed in class today. And it’s not even Fibonacci’s greatest contribution to math! 

However, the sequence explains many different aspects of life and once you have heard about it, 

you will not view anything the same again. 

Fibonacci’s sequence is the list of numbers where the next number is a sum of the 

previous two. Fibonacci invented the sequence as a riddle: a pair of baby rabbits can produce 

offspring after two months and then every month thereafter the pair produces a pair of rabbits 

one male and one female (Life 2017). The sequence accounts for each pair of rabbits counting as 

one and as the numbers grow and more rabbits are being produced that gives us the sequence that 

we know today. This occurs since the previous two numbers (of pairs of rabbits) will produce 

offspring. 

When the sequence is taken and used graphically it can form an even more impressive 

value: the Fibonacci spiral. This is created by taking squares where the length of one side is the 

value of each of the numbers in the sequence and then these squares are built off of each other to 

form larger and larger rectangles built of the Fibonacci squares (Life 2017). The trick to making 

the rectangle work is to take the new square and line it up with the added length of the previous 

two squares. To turn this rectangle into a spiral a line is drawn from the inside corner of the 

innermost one-square and through its opposite corner and the curve continues to travel through 

opposite corners (Life 2017). This spiral is very famous in the math world because of all of the 

work that goes into creating it.  



Long 13 
 

A similar spiral is created by setting four bugs lose to play an interesting game of tag. 

The bugs are set in an exact square and they all begin to move towards each other in the same 

direction at the same rate and as they move towards the bug to their right, they create spirals into 

the middle of the square (Fibonacci). This pattern can also be extended to different geometries; 

however, a square provides enough information. The proportion as the bugs move looks very 

familiar as it is the ratio between a Fibonacci number and its previous iteration (Fibonacci). This 

comparison is referred to as the Golden Ratio. 

The Golden Ratio has a glorified name for a reason. The Golden Ratio is equivalent to 

1.618 or !)√+
"

 and it can be expressed in many ways as well since it is such a beloved value 

(Fibonacci). The Golden Ratio is created from Fibonacci’s Sequence based on the ratio of the 

dimensions of the rectangle (length divided by width) that helps define Fibonacci’s curve. This 

ratio and rectangle also appear in many famous works of art and throughout history: the 

Parthenon was built to the dimensions of the Fibonacci rectangle, the Mona Lisa has the essence 

of the spiral starting on her face, and Composition in Red, Yellow, and Blue also is drawn 

according to the ratio (Golden). It is said that the ratio is very pleasing to the eye and draws 

people in, which perhaps is why so many famous pieces of art replicate it. 

Plants follow this pattern of numbers that were all created from a simple riddle! Flowers 

grow Fibonacci numbers of petals in spirals, pinecones do the same, and even the pineapple 

follows this pattern which has been deemed efficient for explaining characteristics of plants 

(Fibonacci). This means that nature even follows this sequence of numbers and makes it out to 

be the most important discovery that a mathematician has made. The sequence applies to all parts 

of life and we have not heard anything yet. 
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Fibonacci's Sequence is based on the principle that each new element in a sequence is the 

sum of the previous two. To apply this to music, each new measure is a combination of the two 

immediately before it. There are two examples of this within the piece separated by a measure of 

rest. The first version uses quarter notes in the first and second measure and as these notes are 

added together, they are adjusted to take up less time in the measure so that it is easier to 

determine when the next element of the sequence begins. The second version begins with eighth 

notes and complicates much more quickly, even as it follows the same guidelines as the first 

version. 
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Modular Arithmetic: 

Whenever someone asks what day of the week it will be in eight days, what they are 

really having you do is modular arithmetic! They are asking you to take your week divide the 

days by seven and take the remainder (in this case one) and add that to the current day of the 

week and determine what day it will be. Say it is a Tuesday, in eight days will be a Wednesday. 

This is the same as if someone had asked what day of the week it will be tomorrow or what day 

of the week it will be in 15 days. This is more of what modular arithmetic is, it allows for 

numbers to be comparable in different modulos. 

 The idea of modular arithmetic is the division algorithm stating that a=bq+r where a and 

b are integers where b is greater than zero and r is between 0 and b (Gallian 3). This is the idea 

that any number can be broken down to form this equation where a is the number that we are 

investigating, q is the modulo (or mod) which is the number that is being divided by, b is the 

largest whole number of times that q can go into a, and r is the remainder. The day of the week 

example has an a value of eight, q is seven since there are seven days in a week, b is one since 

seven goes into eight once, and the remainder has r equal to one. Based on modular arithmetic 

numbers can be equivalent if they have the same r value in the same modulo, this is called an 

equivalence class (Gallian 18). This is why one, eight, and fifteen days from Tuesday are all 

Wednesdays: One, eight, and fifteen are in the same equivalence class in mod 7. We will also see 

modular arithmetic in figuring out what month it will be if we are asking more than 12 months 

away.  

Music is another example of modular arithmetic being used in daily life. Music has eight 

note scales. They are represented by the letters A through G. This means that every eighth note is 
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the same letter repeated. The note is eight tones higher, but the letter is signified as the same. 

These notes together sound like the same pitch only in different octaves. Modular arithmetic 

surrounds us in ways (like this) that we do very naturally, yet this function is also used in a lot of 

advanced math practices. Many proof techniques require that modular arithmetic be understood 

so that more advanced topics can be proved true. For example, modular arithmetic turns a normal 

set of numbers into cyclic groups which allows for proofs referring to groups to apply to certain 

sets of numbers that would not form a group otherwise (Weisstein Cyclic). But as this is abstract 

algebra, I digress.  

 Modularity is a piece that takes a basic scale and arpeggio and shows how the different 

modulos affect the range of the piece. The first time through the scale is played regularly, then in 

mod 8, mod 6, mod 4, and mod 2 with B flat being the first note in each modulos. This shows 

how different notes become equivalent in their equivalence classes because in mod 6 and mod 2 

B flat and A are in the same equivalence class, but in mod 4 and mod 8 they are not. This will 

change because in mod 6 and 2, B flat has the same remainder, but not in mod 4 or 8. 

 Modular the Beautiful is the same concept except that the piece is more recognizable, and 

the mod is more complicated. America the Beautiful is played as written the first time through, 

then mod 8 and then mod 4. It is intriguing because the notes are still near the correct 

relationships to hear the song, but they are not the same sound. This makes sense because the 

relationships between the notes are the same, just separated by less space than normal. 
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Symmetries: 

 All polygons can be transformed a different number of times. Squares can be turned 90º 

four times to reach its original position. The same square can be flipped vertically, horizontally, 

and diagonally in both directions. This is eight symmetries. A triangle has six symmetries and a 

circle has infinite symmetries. These symmetries are part of what defines the shapes and the 

study of them proves very interesting.  

 Symmetries of a square are as follows: Rotation of 0º/360º, Rotation of 90º, Rotation of 

180º, Rotation of 270º, Flipped Horizontally, Flipped Vertically, Flipped from the top right to the 

left bottom, and Flipped from the top left to the right bottom. These flips and rotations can then 

be combined. Table 6.1 below demonstrates all of the possible two-combination flips and 

rotations and their end result. The original square can be viewed in the top left where A, B, C, 

and D denote the corners of each square and then (following the symmetries being applied) 

where those corners end up. The top row action occurs first followed by the side column action.  
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Symmetries 
of a Square 

Stay R90 R180 R270 FH Fv FLeft top-Right 

Bottom 

FRight top-Left 

Bottom 

Stay AB 
DC 

DA 
CB 

CD 
BA 

BC 
AD 

DC 
AB 

BA 
CD 

CB 
DA 

AD 
BC 

R90 DA 
CB 

CD 
BA 

BC 
AD 

AB 
DC 

AD 
BC 

CB 
DA 

DC 
AB 

BA 
CD 

R180 CD 
BA 

BC 
AD 

AB 
DC 

DA 
CB 

BA 
CD 

DC 
AB 

AD 
BC 

CB 
DA 

R270 BC 
AD 

AB 
DC 

DA 
CB 

CD 
BA 

CB 
DA 

AD 
BC 

BA 
CD 

DC 
AB 

FH DC 
AB 

CB 
DA 

BA 
CD 

AD 
BC 

AB 
DC 

CD 
BA 

DA 
CB 

BC 
AD 

Fv BA 
CD 

AD 
BC 

DC 
AB 

CB 
DA 

CD 
BA 

AB 
DC 

BC 
AD 

DA 
CB 

FLeft top-Right 

Bottom 
CB 
DA 

BA 
CD 

AD 
BC 

DC 
AB 

BC 
AD 

DA 
CB 

AB 
DC 

CD 
BA 

FRight top-Left 

Bottom 
AD 
BC 

DC 
AB 

CB 
DA 

BA 
CD 

DA 
CB 

BC 
AD 

CD 
BA 

AB 
DC 

Table 6.1 Symmetries of a square  

Symmetries of a triangle are as follows: Rotation of 0º/360º, Rotation of 120º, Rotation of 

240º, Flipped top to bottom left, Flipped top to the right bottom, and Flipped from the left bottom 

to the right bottom. Table 6.2 demonstrates all of the two-action combinations of the triangle 

with the top row action applied before the left column. The original placement is in the top left of 

the grid.  
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Symmetries of a 
Triangle 

Stay R120 R240 FTop-Left FTop-Right FLeft-Right 

Stay A 
BC 

B 
CA 

C 
AB 

B 
AC 

C 
BA 

A 
CB 

R120 B 
CA 

C 
AB 

A 
BC 

A 
CB 

B 
AC 

C 
BA 

R240 C 
AB 

A 
BC 

B 
CA 

C 
BA 

A 
CB 

B 
AC 

FTop-Left B 
AC 

C 
BA 

A 
CB 

A 
BC 

B 
CA 

C 
AB 

FTop-Right C 
BA 

A 
CB 

B 
AC 

C 
BA 

A 
BC 

B 
CA 

FLeft-Right A 
CB 

B 
AC 

C 
BA 

B 
CA 

C 
AB 

A 
BC 

Table 6.2 Symmetries of a triangle  

These symmetry groups are called dihedral groups represented D4 for squares and D3 for 

triangles, as the square symmetries are of order eight and the triangle symmetries are of order six 

because that is the number of symmetries for each (Introduction). The symmetry combinations 

are interesting because they still can only produce the initial symmetries. The table is filled with 

eight different possibilities for how the square can end up. Some symmetries have inverses that 

render the square in its starting position. For example, using a square, a 90º turn followed by a 

vertical flip is the same as a flip from the right top to the left bottom. The flips are their own 

inverses while the turns are a bit more complicated The symmetries encompass all eight possible 

outcomes for the square as long as the square returns to the same position as before (it would not 

be a symmetry if the square was turned to a diamond formation).  

What is also interesting is that these groups are not abelian. Being abelian means that the 

elements in the group commute with one another (Weisstein Abelian). Multiplication is abelian 

because 2*3=3*2. Some symmetry elements are not commutative: a 90º turn followed by a 

vertical flip gets a very different result than a vertical flip followed by a 90º turn. Square 
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symmetries can come in handy when trying to write proofs in generalities for all groups, because 

not all groups are abelian so the symmetries are a good counter-example.   

 The first symmetry piece was created using this concept by having four notes written on a 

square and then the same symmetries applied. The original notes are F, low F, E, and low G. I 

found that the music reacts in a similar way than that of the square’s reflections and rotations. 

The music reads for each measure to be a square and then starting on the rows with two actions 

applied to them the table is read left to right. The result is intriguing to hear and to understand 

that it is a collection of eight different measures strategically placed and heard to understand how 

the square is also changed and moved.  

 The second piece is created in a very similar manner, only a triangle was used. Triangles 

have different symmetries than squares and the piece reflects this difference. The square 

reflections result in very different measures and notes while the triangle symmetries all stay 

within a certain range.  
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Interaction: 

 The purpose of this project, the research, and the musical pieces is to reach out to people 

and help show them some of the cool things that math can do. I am hopeful that this may spark 

an idea in someone, inspire someone to keep learning math, or to give a teacher a tool to help 

encourage their students. For these reasons the music and recordings are welcome to be played 

by anyone for any purpose as long as it encourages study in music or math.  

 I would like to encourage any teachers to try and incorporate these songs and descriptions 

into their classrooms. In only a few minutes a teacher can showcase one of these ideas to “wake 

up” their classroom and get more interaction from students. The pieces are written in such a way 

that even someone with neither a music nor a mathematics background should be able to 

comprehend what is being explained and played. For those who understand math, this project 

demonstrates a creative outlet that they can explore with mathematics of their choosing. 

Musicians similarly may feel more connected to the process and feel empowered to master math 

that is being displayed in such a way that appeals to them. Whatever the students’ background, 

this project was created to inspire intellectual inquiry.   
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Conclusion: 

 Music and math are the perfect combination because it allows logical people to see the 

beauty in music and the artist-minded people a chance of peeking into the wonders of math. 

More than that, music helps in the learning of math at all ages. In children, music and math 

combined classes produced two results: the first group showed longer attention spans and focus 

while they began to grasp the concept, while the second group enjoyed the experienced as it 

reinforced the learning (McDonel 53). This just goes to show that the two go hand-in-hand and 

provide a great way for everyone to find something they enjoy while they learn.  

Fractals, Chaos Theory, Fourier Series, Fibonacci’s Sequence, Modular Arithmetic, and 

Symmetries are mathematical topics that have stumped students for generations. I hope that in 

reading these explanations they have been made clearer. I also encourage you to go to 

https://mathmusic.pages.roanoke.edu/ and listen to the pieces being played. Math does not have 

to be scary, and music is not all fun and games.  

Welcome to Mathematical Compositions and Musical Calculations. 
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Resources: 

https://musopen.org/ 

https://musescore.com/user/6168156/scores/3472726 

 

 


